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Abstract
An analytical approach has been developed for the electron–phonon coupling
in the Holstein–Hubbard model. The Hubbard U is treated approximately by
the slave-boson approach. We show that our approach is flexible and physically
clear because it is based on perturbation theory. When the dimensionless ratio
ωp/2Dt is small, ωp/2Dt � 1, our result is similar to that of the Migdal–
Eliashberg theory. When ωp/2Dt > 1, our result approaches that of the
Lang–Firsov transformation and small polaron theory. We have calculated the
effective mass of electrons at the Fermi surface to show that the new perturbation
approach works well in the intermediate region where ωp/2Dt ∼ 1.

PACS numbers: 71.38.+i, 64.60.Cn, 71.30.+h, 71.45.Lr

1. Introduction

Recently the polaronic behaviour of charge carriers in electron–phonon interacting systems
with strong electron correlation has received considerable attention due to important
classes of materials, such as the high-temperature superconductors [1, 2] and the colossal
magnetoresistance manganites [3, 4]. As for the analytical studies of the electron–phonon
interaction, usually the Migdal–Eliashberg (ME) theory [5] and the perturbation expansion are
used for the region of lower phonon frequency ωp � EF (near-adiabatic case) where ωp is the
phonon frequency and EF is the electron Fermi energy, and the small polaron theory with the
strong-coupling expansion [6] is used for the region of lower Fermi energy ωp � EF (anti-
adiabatic case) and strong coupling. However, how to treat the region between the two limits
where the phonon energy is of the same order of magnitude as the Fermi energy, ωp ∼ EF , is
still an open problem.

Among the models for correlated electrons coupled with phonons the Holstein–Hubbard
model has been studied [7–10],
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H = −t
∑
〈i,j〉

∑
σ

(
c†iσ cjσ + c

†
jσ ciσ

) − µ0

∑
j,σ

c
†
jσ cjσ

+
∑

j

ωpb
†
j bj +

∑
j,σ

g
(
b
†
j + bj

) (
c
†
jσ cjσ − n

2

)
+ U

∑
j

nj↑nj↓. (1)

The notation is usual (we put h̄ = 1 and kB = 1). njσ = c
†
jσ cjσ is the number operator and

n = 1
N

∑
j,σ 〈njσ 〉 is the number density of electrons with bare chemical potential µ0 (N is

the number of sites). Although there are many studies on the single-electron Holstein model,
the research work on the many-polaron state is not sufficient and satisfied. Very recently, the
many-polaron system was studied by Capone et al [9] using the exact diagonalization of small
clusters, and by Millis and his co-workers [10] using the dynamical mean-field approximation.

In this work we propose a new perturbation approach to the many-electron Holstein–
Hubbard model. We try to take advantage of both the variational and perturbation methods
and the main procedure of the approach is as follows. H in (1) can be divided as H = H0 + V

where V is the last term and may be treated as the perturbation. We try to find a better way
to divide the Hamiltonian into an unperturbed part and perturbation by means of the unitary
transformation: H̃ = exp(S)H exp(−S) = H̃ 0 + Ṽ . The unperturbed part H̃ 0 �= H0 should
be simple enough to solve exactly and, at the same time, contains the main physics of the
coupling system. Ṽ should be small in the meaning that the matrix elements of Ṽ between
different eigenstates of H̃ 0 are as small as possible.

2. Transformed Hamiltonian

In this paper the Hubbard U is treated approximately by the infinite-U slave-boson approach.
The Holstein–Hubbard Hamiltonian can be approximated as

H =
∑
k,σ

(zεk − µ′
0)c

†
kσ ckσ +

∑
q

ωpb†
qbq +

1√
N

∑
k,q,σ

gq
(
b
†
−q + bq

)
c
†
k+qσ ckσ + UdN (2)

where d is the probability of double occupancy and z is the renormalization factor of the
Hubbard U on the hopping. We have z = 2(1 − n)/(2 − n) and d = 0 for the infinite-U
slave-boson approach [11]. µ′

0 �= µ0 is the renormalized chemical potential by the Hubbard
U, εk = −2t

∑D
τ=1 cos(kτ ). Note that the q = 0 phonon is not coupled with the electrons:

gq = g for q �= 0 and g0 = 0.
H is an electron–phonon coupling system and we use the following two unitary

transformations to treat the electron–phonon correlation. The first one is a polaronic
transformation, H ′ = exp(S1)H exp(−S1), where

S1 = 1√
N

∑
k,q,σ

gq

ωp

rq
(
b
†
−q − bq

)
c
†
k+qσ ckσ . (3)

Here we introduce an electron–phonon correlation function rq which is q-dependent and its
form will be determined later. The transformation can be done to the end and the result is

H ′ = H ′
0 + H ′

1 + H ′
2

H ′
0 =

∑
k,σ

(ηzεk − µ′
0)c

†
kσ ckσ +

∑
q

ωpb†
qbq + UdN (4)

η = exp

{
− 1

N

∑
q

g2

ω2
p

r2
q(1 − γq)

}
γq = −εq/2Dt (5)
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H ′
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H ′
2 = −tz
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∑
σ

(
c†iσ cjσ + c

†
jσ ciσ

){cosh[Xi,j] − η}

− tz
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σ

(
c†iσ cjσ − c

†
jσ ciσ

){sinh[Xi,j] − ηXi,j}

− 1

N

∑
k,k′,q

∑
σ,σ ′

g2
q

ωp

rq[2 − rq]c†k+qσ ckσ c
†
k′−qσ ′ck′σ ′ (7)

Xi,j = 1√
N

∑
q

g

ωp

rq
(
b
†
−q − bq

)
[e−iq·i − e−iq·j]. (8)

Terms in H ′
2 are second order in g or higher. Up to now, the transformation has been done

exactly and there is no approximation.
After the polaronic transformation, the first-order terms of O(g) still exist in H ′

1. We
apply a further transformation to H ′ [12]: H ′′ = exp(S2)H

′ exp(−S2), where the generator
S2 is

S2 = 1√
N

∑
k,q,σ

gq

ωp

(
b
†
−q − bq

)
[ξ(k + q, k) − rq]c†k+qσ ckσ (9)

ξ(k + q, k) = ωp

ωp + η′(|εk+q − µ| + |εk − µ|) . (10)

µ is the real chemical potential, which may be different from the bare one, and η′ = ηz.
Here a function ξ(k′, k) is introduced. Note that 0 � ξ(k′, k) � 1 measures the intensity
of the electron–phonon scattering process: ξ(k′, k) ∼ 1 if both the energies of the incoming
and outgoing electrons εk+q and εk are close to the chemical potential µ, and ξ(k′, k) � 1
otherwise. The width of the region where ξ(k′, k) ∼ 1 is proportional to the phonon frequency
ωp. This is to say that only those electrons near the Fermi surface can be scattered by phonons
intensively. The reason of choosing the form of ξ(k′, k) in equation (10) will become clear
later. The transformation can proceed order by order and till the second order of g,

H ′′ =
∑
k,σ

(η′εk − µ′
0)c

†
kσ ckσ +

∑
q

ωpb†
qbq + UdN

+
1√
N

∑
k,q,σ

g(1 − ξ(k + q, k))
(
b
†
−q + bq

)
c
†
k+qσ ckσ

− 1√
N

∑
k,q,σ

g

ωp

η′(εk+q − εk)ξ(k + q, k)
(
b
†
−q − bq

)
c
†
k+qσ ckσ

− t
∑
〈i,j〉

∑
σ

z
(
c†iσ cjσ + c

†
jσ ciσ

){cosh[Xi,j] − η}

− t
∑
〈i,j〉

∑
σ

z
(
c†iσ cjσ − c

†
jσ ciσ

){sinh[Xi,j] − ηXi,j}

− 1

2N

∑
k,q

∑
σ

g2

ω2
p

η′(εk − εk+q)
(
b
†
−q − bq

)(
b†

q − b−q
)
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Figure 1. V (k + q, k) for n = 0.6, λ = 0.5 and ωp/4t = 0.01, 0.1 and 0.5, as well as VBCS
(dashed-dotted) and VLF (dashed).

× [
ξ 2(k + q, k) − r2

q

][
c
†
k+qσ ck+qσ − c

†
kσ ckσ

]
− 1

N

∑
k,k′,q

∑
σ,σ ′

g2
q

ωp

ξ(k + q, k)[2 − ξ(k′ − q, k′)]c†k+qσ ckσ c
†
k′−qσ ′ck′σ ′ . (11)

All terms of higher order than g2 will be omitted in the following treatment.
The phonon-induced interaction between electrons, the four-fermion term in H ′′, is

V (k + q, k) = −g2
q

ωp + 2η′(|εk+q − µ| + |εk − µ|)
(ωp + η′(|εk+q − µ| + |εk − µ|))2

. (12)

It should be compared with the BCS potential [13]

VBCS(εk+q, εk) =
{−g2/ω |εk+q − µ|, |εk − µ| < ωp

0 |εk+q − µ|, |εk − µ| > ωp

(13)

and the Lang–Firsov potential for small polarons

VLF(εk+q, εk) = −g2/ωp, |εk+q − µ|, |εk − µ| < EF . (14)

Figure 1 shows V (k + q, k) for n = 0.6, λ = g2/4tωp = 0.5 and ωp/4t = 0.01, 0.1 and 0.5,
as well as VBCS and VLF. One can see that for smaller phonon frequency, the induced potential
has a sharp valley around the Fermi level εk = µ, similar to the BCS potential which is a
square well. For larger phonon frequency the valley becomes flatter and, finally, approaches
that of the LF potential.

3. Perturbation treatment

The purpose of our transformation is to find a better way to divide the Hamiltonian into the
unperturbed part and the perturbation. Up to the second order of g the unperturbed part H ′′

0
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and the perturbation H ′′
1 of H ′′ are

H ′′
0 =

∑
k,σ

ρ(εk)(εk − µ)
[
c
†
kσ ckσ − 〈

c
†
kσ ckσ

〉]
+

∑
q

ωpb†
qbq + Eg − µ′

0nN (15)

ρ(εk)(εk − µ) = η′εk − µ′
0 +

1

N

∑
q

g2

ω2
p

η′(εk+q − εk)
(
ξ 2(k + q, k) − r2

q

)

− 1

N

∑
k′

g2

ωp

ξ(k′, k)[2 − ξ(k′, k)]
(
1 − 2

〈
c
†
k′σ ck′σ

〉)
(16)

Eg =
∑
k,σ

ρ(εk)(εk − µ)
〈
c
†
kσ ckσ

〉
+ UdN + 2V0

(
n2

4
− d

)
N + µ′

0nN

− 1

N

∑
k,q

∑
σ

g2

ωp

ξ(k + q, k)
(
1 − 〈

c
†
k+qσ ck+qσ

〉)〈
c
†
kσ ckσ

〉
(17)

V0 = 1

N3

∑
k,k′,q

g2
q

ωp

ξ(k + q, k)[2 − ξ(k′ − q, k′)] (18)

H ′′
1 = 1√

N

∑
k,q,σ

g(1 − ξ(k + q, k))
(
b
†
−q + bq

)
c
†
k+qσ ckσ

− 1√
N

∑
k,q,σ

g

ωp

η′(εk+q − εk)ξ(k + q, k)
(
b
†
−q − bq

)
c
†
k+qσ ckσ . (19)

〈. . .〉 means an average over the ground state of H ′′
0 . Eg is the ground state energy and the

second-order contribution of the perturbation H ′′
1 to the ground state energy is


E2 =
∫ β

0
dτ1

∫ τ1

0
dτ2〈[H ′′

1 (τ1)H
′′
1 (τ2)]〉|T =0

= − 1

2N

∑
k′,k

η′2g2

[ωp + η′(|εk′ − µ| + |εk − µ|)]2
{1 − sign(εk′ − µ) sign(εk − µ)}

×
{

[|εk′ − µ| + |εk − µ| − (εk′ − εk)]
2 1 + sign(εk′ − εk)

ωp + ρ(εk′)(εk′ − µ) − ρ(εk)(εk − µ)

+ [|εk′ − µ| + |εk − µ| + (εk′ − εk)]
2 1 − sign(εk′ − εk)

ωp − ρ(εk′)(εk′ − µ) + ρ(εk)(εk − µ)

}
= 0 (20)

because of the functional form of ξ(k + q, k) (equation (10)). This is nothing but making
the matrix element of H ′′

1 between the ground state and the lowest-lying excited states of H ′′
0

vanishing. Thus the first-order terms (O(g)) which are not exactly cancelled after the two
unitary transformations are related to the higher lying excited states and should be irrelevant
under renormalization [12].

Although the form of ξ(k + q, k) is already defined from the beginning (equation (10)),
the form of rq in the first transformation, equation (3), has not been determined. Note that rq

does not appear in Eg explicitly and Eg depends on rq implicitly via η (equation (5)). Thus,
we can determine the form of r2

q by minimizing Eg:

r2
q = − 1

1 − γq

1

N

∑
k

ω2
p(εk+q − εk)

[ωp + η0z(|εk+q − µ| + |εk − µ|)]2

〈
c
†
kσ ckσ

〉/ 1

N

∑
k

εk
〈
c
†
kσ ckσ

〉
(21)

where 0 � η0 � 1 is a parameter.
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As g2/ωp is the polaronic binding energy independent of the ionic mass M, in the adiabatic
limit M → ∞ (ωp = √

K/M → 0,K is the spring constant) we have rq = 0 and η = 1. But
in the anti-adiabatic limit M → 0 (ωp → ∞) it is easy to get rq = 1 and ln η = −g2

/
ω2

p.
Besides, for the strong coupling limit g/ωp � 1, we have η � 1 and thus rq → 1 and
ln η → −g2

/
ω2

p. These are consistent with the LF theory [6].
The electron Green function for the transformed Hamiltonian H ′′ can be derived from the

Dyson equation

G(k, ikm) = G0(k, ikm) + G0(k, ikm)�(k, ikm)G(k, ikm).

The second-order self-energy of H ′′
1 is (T = 0)

�(k, ikm) = 1

N

∑
q

η′2g2

[ωp + η(|εk−q − µ| + |εk − µ|)]2

×
{

[|εk−q − µ| + |εk − µ| − (εk−q − εk)]
2 θ(εk−q − µ)

ikm − ωp − ρ(εk−q)(εk−q − µ)

+ [|εk−q − µ| + |εk − µ| + (εk−q − εk)]
2 θ(µ − εk−q)

ikm − ωp + ρ(εk−q)(εk−q − µ)

}
.

(22)

The renormalized chemical potential µ can be determined by

1 − n = 1

N

∑
k

sign(εk − µ). (23)

Obviously, �(εk = µ, ikm) = 0 for T = 0. This is another reason for the choice of functional
form of ξ(k + q, k).

The quasi-particle energy determined as the pole of the Green function is

Ek − µ′
0 = ρ(εk)(εk − µ) + Re[�(k, ρ(εk)(εk − µ))]

= η′(εk − µ) + (η′µ − µ′
0) + Re[�(k, ρ(εk)(εk − µ))]

− 1

N

∑
k′

g2

ωp

ξ(k′, k)[2 − ξ(k′, k)] sign(εk′ − µ)

+
1

N

∑
q

g2

ω2
p

η′(εk+q − εk)
(
ξ 2(k + q, k) − r2

q

)
. (24)

The bare chemical potential µ′
0 is determined by letting εk = µ in equation (24), which leads

to

µ′
0 = η′(1 − ln η)µ +

1

N

∑
k′

g2 η′(εk′ − µ)

(ωp + η′|εk′ − µ|)2

− 1

N

∑
k′

g2 ωp + 2η′|εk′ − µ|
(ωp + η′|εk′ − µ|)2

sign(εk′ − µ). (25)

The renormalized factor ρ(εk) is

ρ(εk)(εk − µ) = η′(1 − ln η)(εk − µ) − 1

N

∑
k′

g2

×
[

ωp + 2η′(|εk′ − µ| + |εk − µ|)
[ωp + η′(|εk′ − µ| + |εk − µ|)]2

− ωp + 2η′|εk′ − µ|
(ωp + η′|εk′ − µ|)2

]
sign(εk′ − µ)

+
1

N

∑
k′

g2η′
[

εk′ − εk

[ωp + η′(|εk′ − µ| + |εk − µ|)]2
− εk′ − µ

(ωp + η′|εk′ − µ|)2

]
.

(26)
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Figure 2. The effective mass m/m∗ at Fermi surface in 2D as functions of the electron–phonon
coupling λ, n = 0.6 and ωp = t . For comparison, m/m∗

RS (dotted), m/m∗
ME (dashed-dotted) and

m/m∗
LF (dashed) are also shown.

The renormalization factor at the Fermi energy (εk = µ), which is the mass renormalization
factor m/m∗, is

m/m∗ = ρ(εk = µ) = η′(1 − ln η) − 1

N

∑
k′

g2η′

(ωp + η|εk′ − µ|)2
. (27)

This should be compared to the well-known mass renormalization factor of the ordinary
perturbation theory (the Rayleigh–Schrodinger (RS) perturbation [14])

m/m∗
RS = 1 − 1

N

∑
k′

g2

(ωp + |εk′ − µ|)2
(28)

as well as to that of the ME theory (the same as that of the Brillouin–Wigner perturbation
[14]),

m/m∗
ME = 1

/(
1 +

1

N

∑
k′

g2

(ωp + |εk′ − µ|)2

)
. (29)

For the adiabatic limit ωp → 0, rq → 0 leads to η → 1 and we can get m/m∗ =
m/m∗

RS = 1 − λ′ and m/m∗
ME = 1/(1 + λ′), where λ′ = 2g2N(εF )/zωp and N(εF )/z is the

DOS at the Fermi level. This result is the same for 1D, 2D and 3D.
For the anti-adiabatic limit ωp → ∞ or for the strong coupling εp/ωp � 1, we have

η → exp(−εp/ωp). Then, we can get the LF result of the effective mass from equation (27):
m/m∗

LF = exp(−εp/ωp).
For weak to intermediate electron–phonon coupling and finite phonon frequency, in

figure 2 we show our calculation of the effective mass m/m∗ at the Fermi surface in 2D as
functions of the electron–phonon coupling λ = g2/4tωp (with n = 0.6 and fixed phonon
frequency ωp = t). For comparison, we also show m/m∗

RS,m/m∗
ME and m/m∗

LF. One can see
that for weak coupling our results are nearly the same as those of the RS or ME theory; but
for strong coupling they approach those of the LF theory.
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4. Summary and discussion

An analytical approach has been developed for the many-electron Holstein–Hubbard model.
Our approach is flexible and physically clear because it is based on the perturbation theory.
When the dimensionless ratio ωp/2Dt is small, ωp/2Dt � 1, our result is similar to that of
the ME theory. When ωp/2Dt > 1, our result approaches that of the LF transformation and
small polaron theory. We have calculated the Green function, the effective mass of electrons at
the Fermi surface, to show that the new perturbation approach works well in the intermediate
region where ωp/2Dt ∼ 1.

The purpose of our unitary transformations is to find a better way to divide the Hamiltonian
into an unperturbed part and the perturbation. In this work the transformed H ′′ is divided
into two parts: The unperturbed part is H ′′

0 and the perturbation H ′′
1 . We believe that the

unperturbed part H ′′
0 contains the main physics of the coupling system because the effect of

perturbation H ′′
1 is eliminated in the lowest order by introducing the function ξ(k + q, k).

The approach developed in this paper is based on two unitary transformations. The first
transformation is done to the end and after the transformation all terms have been collected.
The second transformation cannot be done to the end and we stop after the second order, which
is the main approximation we have made. Note that rq introduced in the first transformation
should be helpful for the convergence of the second transformation since the expansion
parameter of the second transformation S2 is, in fact, g(ξ(k + q, k) − rq)/ωp. This expansion
parameter is quite small or even ∼0 in the following four limiting cases:

(1) Adiabatic limit (ωp = 0): in this limit rq = 0, ξ(k + q, k) = 0 (equation (10)), so we
have ξ(k + q, k) − rq = 0.

(2) Anti-adiabatic limit (ωp → ∞): in this limit rq = 1 and ξ(k + q, k) = 1, and we also
have ξ(k + q, k) − rq = 0.

(3) Strong coupling regime (εp/ωp � 1): the narrowing factor η should be small enough
(η → 0) and then the difference ξ(k + q, k) − rq will also become small enough.

(4) Weak coupling regime (λ � 1): there should be no problem for the convergence of the
second transformation.

Hence, we conclude that the two points which justify our perturbation approach are:
(1) it can reproduce both the lower phonon frequency results of the ME theory and the
higher frequency results of the LF theory; (2) in the intermediate region, ωp/EF ∼ 1 and/or
εp/ωp � 1, the expansion parameter g(ξ(k + q, k)− rq)/ωp should be within the controllable
region since we have 0 � ξ(k + q, k) � 1, 0 � rq � 1 and |ξ(k + q, k) − rq| < 1.
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